Hot results from PHENIX

Julia Velkovska

for the PHENIX collaboration

15 papers published since the last User meeting

Two pillars in the PHENIX experimental program: Spin and Heavy-ions Today's talk:

Spin:

- Zoom in on gluons' contribution to proton spin with A_{LL} measurements
- The polarized sea quark and anti-quark distributions from W^{+/-}A_I
- A_N of forward neutrons: surprises from first polarized p+A collisions! Heavy-ion physics:
- Microscopic structure probed with charm, bottom, and jets
- System evolution puzzles:
 - Large direct photon flow in Au+Au
 - Flow in small systems

The proton spin puzzle

How much of the proton spin is carried by gluons?

Probing ΔG in polarized pp collisions with π^0 A_{LL}

$$A_{LL} = \frac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} = \frac{\displaystyle\sum_{a,b} \Delta f_a \otimes \Delta f_b \otimes d\hat{\sigma}^{f_a f_b \to fX} \cdot \hat{a}_{LL}^{f_a f_b \to fX} \otimes D_f^h}{\displaystyle\sum_{a,b} f_a \otimes f_b \otimes d\hat{\sigma}^{f_a f_b \to fX} \otimes D_f^h}$$

Zooming in on Δ G: π^0 at $|\eta| < 0.35$

Phys. Rev. D 93, 011501(R) (2016)

- Non-vanishing A_{LL}
- Increasingly positive with p_T and \sqrt{s}
- Global fits do not yet include \sqrt{s} =510 GeV data, but suggest that gluons contribute a significant fraction of the proton spin
 - Small x still not fully explored
- New data provides contraint down to x ~ 10⁻²

Δ G: towards lower x at forward rapidity

J/ψ @ 510 GeV ,1.2<|y|<2.2

Just submitted to PRD: arXiv:1606.01815

accesses down to $x\sim2\times10^{-3}$

The missing pieces in $\Delta\Sigma$ through W^{+/-} A_L

$$A_L = \frac{N^+(e) - N^-(e)}{N^+(e) + N^-(e)}$$

Parity violating W production:

Fixes quark helicity and flavor $u_L \overline{d}_R \to W^+ \qquad d_L \overline{u}_R \to W^-$

- measure A_L of the outgoing leptons
- no fragmentation involved
- $x \sim M_W / \sqrt{s} \sim 0.16$
- extract $\Delta \bar{u}$, $\Delta \bar{d}$

$$A_{L}^{W^{+}} = \frac{-\Delta u(x_{1})\overline{d}(x_{2}) + \Delta \overline{d}(x_{1})u(x_{2})}{u(x_{1})\overline{d}(x_{2}) + \overline{d}(x_{1})u(x_{2})}$$

PRD 93, 051103(R)(2016)

Preference for larger $\Delta \bar{u}$ than in DSSV

$$A_N = \frac{d\sigma_L - d\sigma_R}{d\sigma_L + d\sigma_R}$$

Many topics: both initial and final state effects

The first-ever p⁺+A collisions:

Huge nuclear effect in forward neutron A_N !

Forward neutron A_N

Known effect in p↑p

Well described by interference between π and a₁ Reggeon

Surprise — huge A dependence: factor of ~ 3 increase in magnitude Even the sign changes

Simple π -a₁ interference predicts small dependence

Investigating nuclear effects in forward neutron A_N

Both BBC veto

Both BBC Fired

- Multiple mechanisms contribute?
- UPC or/and high parton density effect?

Need theoretical input!

HOT TOPICS IN HEAVY IONS

QGP	A+A , A+B	p/d/³He +Au
Microscopic structure	E _{loss} in separated charm and bottom Jets	Jets
System evolution	Direct photon flow	Collective flow of hadrons

c/b separation by secondary vertex

VTX detector

FVTX detector

R_{AA} for electrons from charm and bottom

Phys. Rev. C93, 034904 (2016)

R_{AA} for electrons from charm and bottom

Phys. Rev. C93, 034904 (2016)

Bottom less below ~ 3 GeV/c!
A factor of ~ 20 more statistics from Run 14 & 16!
Stay tuned for future updates!

B->J/ψ in pp (510 GeV) and CuAu (200 GeV)

NEW Release for Users' meeting!

$$R_{AA}^{B \to J/\psi} = \frac{F_{B \to j/\psi}^{AA}}{F_{B \to j/\psi}^{pp}} R_{AA}^{J/\psi} = \frac{F_{B \to j/\psi}^{AA}}{0.1} R_{AA}^{J/\psi}$$

B less suppressed than J/ψ

Jets in Cu+Au and d+Au

2016 RHIC/AGS Thesis award! Arbin Timilsina

Phys. Rev. Lett. 116, 122301 (2016)

- jets suppressed by ~factor of 2 in central Cu+Au collisions
- suppression shows no p_T dependence
- In d+Au:
 - no suppression in minimum bias events
 - surprising centrality dependence

Large system evolution: Au+Au probed with direct photons

arXiv:1509.07758

Simultaneous description of large yield and large flow difficult

Late emission important

Shining sQGP

Collectivity in small systems

- Ample experimental evidence for collective effects in small systems at top RHIC energy and at the LHC
 - Ridges, multiparticle correlations
 - Particle species dependence in v₂ and spectra (dAu, pPb)
 - Yet, many competing explanations

Geometry controlled experiments: pAu, dAu, ³HeAu => capitalize on RHIC's unique capabilities

Strong constraints on the initial state

Model predictions for v_2 and v_3

- v₂: weak energy dependence
- hadronic only flow ruled out at 200 GeV
- triangular flow takes a longer time to develop => much more sensitive to the shorter and shorter QGP lifetime at the lower energies
- Large difference between SuperSONIC, SONIC and AMPT
- v₃ collapses if the system is hadronic

PHENIXians hard at work checking and analyzing Run 16 d+Au data!

- Great enthusiasm for the d+Au BES physics
- Online data production, and online analysis!
- First signs of v₂ at 200 GeV and 62 GeV
- First indication of non-zero v3 in d+Au at 200 GeV!

What's next for PHENIX?

- Data taking ends with Run 16, but this is not the end of PHENIX!
- >300 active collaborators

- A lot of physics topics in
 - pp at 500/510 GeV
 - pp at 200 GeV
 - p+Al and pAu at 200 GeV
 - Cu+Au at 200 GeV
 - Au+Au at 200 GeV
 - U+U at 193 GeV
 - d+Au at 200,62,39,20 GeV

What's next for PHENIX?

- Data taking ends with Run 16, but this is not the end of PHENIX!
- >300 active collaborators

- A lot of physics topics in
 - pp at 500/510 GeV
 - pp at 200 GeV
 - p+Al and pAu at 200 GeV
 - Cu+Au at 200 GeV
 - Au+Au at 200 GeV
 - U+U at 193 GeV
 - d+Au at 200,62,39,20 GeV

BACKUP

Trigger at 200 GeV dAu

Collectivity in small systems: challenges remain

- Challenge for our understanding of perfect fluid hydrodynamics and the minimal conditions necessary for quark-gluon plasma formation
 - How is equilibration achieved?
 - Role of pre-equilibrium dynamics?
 - Is there a smallest QGP droplet?
 - Role of hadronic flow?
- BES with d+Au collisions (well controlled geometry) aims to disentangle different stages of the system evolution
 - as system spends less and less time in hydrodynamic equilibrium, pre-equilibrium and hadronic contributions gain importance with decreasing beam energy

Small system evolution: confront models with data

 The role of different stages of the system evolution can be assessed in a BES through model comparisons

 $AMPT(\sigma = 0 \text{ mb})$:

hadronic cascade

Projections (based on SONIC) for 5 weeks BES

1 week, 1.6 B evts

robust baseline v_2 and v_3 measurements

Factor of ~20 stat increase from Run8 FVTX improved EP

same detector conditions=> systematics control in the BES

1 week, 160 M evts

1.5 weeks, 110M

1.5 weeks, 9M

All 3 lower energies for robust v₂ measurements to establish

- role of pre-equilibrium stage
- role of hadronic stage

v₃ at lower energy: more sensitive to time spent in QGP

Statistically significant measurements for both v₂ and v₃

Does v_3 collapse at lower energy? upper limits of v_3 can be established

Transition region for v₃ collapse

Largest lever arm for v₂ measurements

Projected EP resolution in BES

He3 +Au at 200 GeV: FVTX crucial for v₃ measurement

TABLE II. The resolution of nth-order event-plane angles measured by the BBC-S and FVTX-S detectors.

Subsystem	$\mathrm{Res}(\Psi_2^{\mathrm{Obs}})$	$\mathrm{Res}(\Psi_3^{\mathrm{Obs}})$
BBC-S $(-3.9 < \eta < -3.0)$	0.110	0.034
FVTX-S (-2.5 $< \eta <$ -1.5)	0.232	0.052
FVTX-S (-3.0 $< \eta < -1.0$)	0.274	0.070

energy	Res (Ψ ₂)	Res (Ψ_3)
200 GeV	0.249	0.070
62 GeV	0.187	0.041
39 GeV	0.136	0.025
20 GeV	0.093	0.022

Both resolution and statistics improved at 200 GeV compared to Run 8 dAu: BBC -> FVTX; 80 M evts -> 1.6 B events

Jets in d+Au

minimum bias jets show no energy loss

Strong centrality dependence

But different from that in Au+Au

Explanation would be anti-correlation between hard and soft particle production

